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We study the stability of a constant volume of fluid spreading down an incline. In contrast to the commonly
considered flow characterized by constant fluid flux, in the present problem the base flow is time dependent.
We present a method to carry out consistently linear stability analysis, based on simultaneously solving the
time evolution of the base flow and of the perturbations. The analysis is performed numerically by using a
finite-difference method supplemented with an integral method developed here. The computations show that,
after a short transient stage, imposed perturbations travel with the same velocity as the leading contact line. The
spectral analysis of the modes evolution shows that their growth rates are, in general, time dependent. The
wavelength of maximum amplitude, �max, decreases with time until it reaches an asymptotic value which is in
good agreement with experimental results. We also explore the dependence of �max on the cross sectional fluid
area A, and on the inclination angle � of the substrate. For considered small A’s, corresponding to small Bond
numbers, we find that the dependence of �max on A is in good agreement with experimental data. This
dependence differs significantly from the one observed for the films characterized by much larger A’s and Bond
numbers. We also predict the dependence of �max on the inclination angle �.
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I. INTRODUCTION

The dynamics of thin film flows is a key feature in nu-
merous applications �1–3�. In particular, there is an increas-
ing interest in understanding flows in microscopic devices
designed to propel and mix small volumes of liquids. Micro-
metric ducts, pumps, turbines, and valves are all examples of
such small devices involving flows of liquids and gases �4,5�.
Even though there has been rapid progress in both manufac-
ture and development of microelectromechanic devices
�MEMS�, knowledge of the physics at these small scales has
advanced at a much slower pace �6,7�. For instance, one
important issue, which still needs further research, is the dy-
namics of the contact line �8–11�. In some scenarios, the
moving front becomes unstable and develops a fingerlike or
sawtooth pattern, depending on the wetting conditions and/or
on the inclination angle of the substrate �12–14�. Moreover,
addition of surfactants may lead to complicated patterns
which include the growth of dendritic structures �15–17�.

The contact line instability is present in many flow con-
figurations, such as spin coating and thermocapillary driven
spreadings. In the first case, the front is unstable under azi-
muthal perturbations �18–22�, the centrifugal force being the
destabilizing agent. In the second case, it is found that the
instability appears for inclination angles greater than a criti-
cal one when a temperature gradient is imposed on an in-
clined substrate �23–29�.

Here, we concentrate on another example of the contact
line instability, that of gravity driven flows on an inclined
solid surface. Experimentally, and in applications, the rel-
evant configuration is the one of a constant volume �CV� of
fluid flowing down a plane �12,13,30–32�. The theoretical
and computational models, however, are often based on a
conceptually simpler constant flux �CF� flow, in which the
film thickness is kept constant far behind the contact line
�33–35�. The boundary conditions appropriate for CF flow
allow one to reduce the partial differential equation govern-
ing the base flow to a time-independent ordinary differential
equation for the film thickness in a moving reference frame.
However, the base state of CV flow is time dependent, and
computations and models based on time-independent as-
sumption necessarily involve approximations whose validity
is difficult to verify. In this work, we avoid this approach
altogether, and consistently compute evolution of the pertur-
bations superimposed on the time-dependent base state.

After the pioneer work on the instability of the contact
line in the CV flow carried out by Huppert �12�, other au-
thors have studied this problem. Silvi and Dussan �30� ana-
lyze the effects of the contact angle on the ability of the fluid
to coat the surface. For small contact angles, they observe
that the front line adopts a fingering pattern so that the fluid
eventually wets all of the surface. On the other hand, for
large contact angles the troughs �zone between fingers� stop
and the fluid spreads only along the fingers, so that the sur-
face is not completely covered. Jerret and de Bruyn �31�
monitor the dependence of the average wavelength �the

mean distance between fingers� �̄ on the inclination angle of

the substrate, �. They find that �̄� �sin ��−0.41, with an expo-
nent slightly larger in absolute value than the one predicted
by Huppert �12�, which was −1/3. Huppert also obtains the
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relationship between �̄ and the cross sectional area A and
finds that �̄�A1/6. We note that in all those works, the vol-
umes of fluid are relatively large with typical cross sectional
area A�1 cm2, and the typical fluid thickness hc much larger
than the capillary length a, giving large Bond numbers B
= �hc /a�2�1.

In two previous works �36,37�, we focus on gravity driven
flow down a vertical plane, �=90°, for small fluid volumes
characterized by A�1 cm2 and correspondingly small B
�1. In Ref. �36� we develop an heuristic model to account
for the contact line instability of CV flow by using the dis-
persion relation given by the linear stability analysis of the
CF flow. The growth rates of the dominant modes computed
within this model are in very good agreement with those
obtained in the experiments. In �37� we show that considered
CV flows are characterized by a dimensionless parameter R
�w0

4 sin � / �Aa2�, where w0 is the initial film width in the
downstream direction. In particular, for �=90° we find that
the wavelength of the mode of maximum amplitude �max is
proportional to w0R−0.27±0.022, also in agreement with the ex-
ponent predicted based on the dimensional analysis �38� for
the flow down a vertical plane, i.e., �max�A1/4. One obvious
consequence of the dependence of �max on R is that B is not
the main parameter which determines the emerging wave-
lengths, since by changing initial fluid configuration through
modifying w0, a given A could be obtained for multiple B’s.
However, B is a relevant parameter in determining the man-
ner of spreading, since for large B’s, the fluid front propa-
gates mainly via rolling motion of the fluid front, like a cat-
erpillar �39,40�. Only when the typical film thickness
becomes of the order of the capillary length, the shape of the
front region changes from caterpillar to wedge �40�. Conse-
quently, the dynamics is qualitatively different for small and
large B’s.

In this paper, we concentrate on the flows characterized
by small B’s, and correspondingly, by small fluid A’s so to be
able to compare directly to the results of the experiments
�36,37�. Furthermore, we explore how the emerging wave-
lengths depend on A and �, motivated particularly by the fact
that current results exist only for �=90°. The analysis is
carried out by studying the evolution of small perturbations
of a CV flow within the framework of a linear stability
analysis. We numerically solve the linear equation that gov-
erns their amplitudes, together with the nonlinear evolution
equation governing the base flow, h0�x , t�. In Sec. II we
present the model used to simulate the evolution of both the
base flow and the perturbations. The main difficulty in cal-
culating perturbation amplitudes is related with the accuracy
needed in the evaluation of the coefficients of the linear
equation. Since these coefficients involve computing fourth
order derivatives of h0�x , t�, a standard discretization method
requires rather small grid size, in particular, in the contact
line region. In order to increase accuracy, we develop an
integral method which allows one to carry out computations
on more coarse grids. This method is described in Sec. III,
where we also validate our numerical code by solving the CF
flow. These computations are carried out in the laboratory
frame and compared with the results obtained in a moving
frame, where the problem is time independent. The analysis

in the moving frame is presented in the Appendix. The CV
flow is studied in Sec. IV, where we describe the spatial and
temporal evolution of the perturbations. Finally, we compare
the numerical and experimental results, and investigate the
influence of A and � on the wavelength of the most unstable
mode. For the purpose of simplified comparison with experi-
ments, we mostly use the �dimensional� value of A to param-
etrize our results. More discussion regarding relevant nondi-
mensional parameters describing the flow can be found in
Ref. �37�.

II. BASIC EQUATIONS

We study the stability of thin liquid films under the lubri-
cation approximation, therefore assuming negligible Rey-
nolds number and small free surface slopes. A major hin-
drance in the development of the theory for film flows is the
incomplete knowledge of the physics at the contact line. A
moving contact line coupled with a no-slip boundary condi-
tion leads to a multivalued fluid velocity there. As a conse-
quence, both the viscous dissipation rate and the shear stress
diverge as fluid thickness h→0 �8,41�. We overcome this
singularity by including a microscopic precursor film �of
thickness hf� ahead of the apparent contact line �42,43�.

For a completely wetting fluid spreading down an inclined
plane �see Fig. 1� under the action of gravity g, the governing
equation for h�x ,y , t� is �see, e.g., Ref. �33��

ht + � · „h3���2h�… − G�� · �h3�h� + G��h3�x − u�h = 0,

�1�

where t is time, ���� /�x ,� /�y�, and �x ,y� are in-plane co-
ordinates. The subscripts x and t in Eq. �1� stand for � /�x and
� /�t, respectively. This equation is formulated in a reference
frame translating with constant velocity u; u=0 corresponds
to the laboratory frame. All variables are dimensionless, and
we denote the scale for h as hc, for x and y as xc, and for t as
tc. The dimensionless parameters G� and G� are conse-
quently given by

G� =
xc

2

a2cos �, G� =
xc

3

hca
2sin � , �2�

where � is the inclination angle of the substrate, a
=�	 / �
g� is the capillary length, 	 is the surface tension,
and 
 is the fluid density. The time scale tc is defined as

tc =
3�

	

xc
4

hc
3 , �3�

where � is fluid viscosity.

� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
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FIG. 1. Scheme of the inclined plane and coordinates axes.
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Let us consider the y-independent solution of Eq. �1�,
h0�x , t�, which describes the spreading of a fluid down an
incline. It satisfies

h0,t + �h0
3h0,xxx�x − G��h0

3h0,x�x + G��h0
3�x − uh0,x = 0. �4�

In order to study the linear stability of this film with respect
to perturbations in the transverse direction y we write

h�x,y,t� = h0�x,t� + �g�x,t;��exp�iqy� , �5�

where � is a small parameter, g�x , t ;�� is the amplitude of the
perturbation, q=2
 /� is the wave number, and � is the
wavelength. By replacing Eq. �5� into Eq. �1�, we obtain to
O��� the linear equation for g�x , t ;��,

gt + c4�x,t�gxxxx + c3�x,t�gxxx + c2�x,t�gxx + c1�x,t�gx

+ c0�x,t�g = 0, �6�

where the coefficients are defined by

c4�x,t� = h0
3,

c3�x,t� = 3h0
2h0,x,

c2�x,t� = − �G� + 2q2�h0
3,

c1�x,t� = 3h0
2�G� − �q2 + 2G��h0,x + h0,xxx� − u ,

c0�x,t� = h0�q2�q2 + G��h0
2 + 6h0,x�G� − G�h0,x + h0,xxx�

+ h0�− 3G�h0,xx + 3h0,xxxx�� . �7�

In order to avoid calculating high order derivatives of h0,
it is convenient to rewrite the coefficients c0�x , t� and c1�x , t�
in terms of the space- and time-dependent fluid velocity of
the base solution in the laboratory frame v�x , t�. In fact, Eq.
�4� can be written more compactly in conservative form

h0,t + �h0„v�x,t� − u…�x = 0, �8�

where

v�x,t� = h0
2�h0,xxx − G�h0,x + G�� . �9�

After some algebra, the coefficients ci�x , t� can be written
as �c2–c4 are repeated here for later reference�

c4�x,t� = h0
3,

c3�x,t� = 3h0
2h0,x,

c2�x,t� = − �G� + 2q2�h0
3,

c1�x,t� = − 3h0
2h0,x�G� + q2� + 3v − u ,

c0�x,t� = h0
3q2�G� + q2� + 3vx. �10�

The freedom of choosing the value of u allows one to
simplify the expressions in Eq. �10� in some particular cases.
For instance, when the problem admits a traveling wave so-
lution, there exists a particular value of u, say u*, such that
h0,t=0. Thus, the coefficients in Eq. �10� become time inde-

pendent, as for the CF flow �33�. On the other hand, when
translational invariance is not allowed and no traveling wave
solution exists, the coefficients are time dependent in any
reference frame.

III. NUMERICAL METHOD

The stability analysis is performed by numerically solving
the coupled system specified by Eqs. �4� and �6�. The equa-
tions are discretized in space by centered finite differences
and evolved in time by using a synchronized time marching
Crank-Nicholson scheme. The solution of Eq. �4� is carried
out by using an adjustable time increment �tn for the nth
step, such that tn+1= tn+�tn. For further details of the nu-
merical treatment of Eq. �4�, we refer the reader to Ref. �44�.
The synchronization between Eqs. �4� and �6� is done as
follows: after h0�x , tn+1� has been evaluated using Eq. �4�, we
proceed to calculate g�x , tn+1 ;�� using Eq. �6�. Within this
time marching scheme, we calculate the coefficients ci in Eq.
�10� with interpolated values of the base state h0 between tn

and tn+1, since the time step for Eq. �6� is typically smaller
than �tn for Eq. �4�, due to convergence reasons.

The boundary conditions for Eq. �4� are h0,x=h0,xxx=0 and
h0=h0

*=const at both ends of the domain, x=0 and x=L. The
constant h0

* depends on the problem at hand: it corresponds
to the thickness far from the contact region in the CF flow,
and to the precursor film thickness in the CV flow. For
g�x , t ;�� in Eq. �6� we use g=gx=gxxx=0 at x=0 and x=L.

The main difficulties in solving Eqs. �4�–�6� lay on the
facts that the coefficients ci�x , t� �i=0, . . . ,4� are time depen-
dent, and that they involve high derivatives of h0�x , t�. For-
tunately, the dependence on high derivatives can be written
in terms of v and vx �see Eqs. �10��. Therefore, we can com-
pute the velocity v by integrating the conservative form of
Eq. �4�, namely, Eq. �8�, as

v = u +
j − F

h0
, �11�

where

F = �
x0

x

h0,t�x�,t�dx� �12�

is the rate of change of fluid volume within �x0 ,x� at time t.
Since the boundary conditions are time independent, the flux
at x=x0, j= �v�x0�−u�h0�x0�, is a constant. Consistently, vx is
obtained from Eq. �8� as

vx = −
�v − u�h0,x + h0,t

h0
. �13�

This method is employed in what follows to improve the
accuracy of our scheme used to compute thin film flows.

A. Integral method applied to CF flow

In this section we compare the convergence of the veloc-
ity fields obtained by applying a standard centered finite dif-
ference scheme �CFDS� to Eq. �9� and from the integral
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method, Eq. �11� in the CF flow. This flow corresponds to the
spreading of a fluid film down an incline with fixed thickness
h* far behind the advancing front. The calculation of the
traveling wave solution and its stability analysis is revisited
in the Appendix, where we use a moving reference frame in
which the solution is time independent. Here, we study the
flow in the laboratory frame, with the goal of testing the
numerical method in a time-dependent problem. As an initial
condition we use a smoothed steplike function for the film
profile which connects the “dry” region �covered by the pre-
cursor film of thickness hf� and the bulk region. Due to the
existence of a constant thickness bulk in the CF flow, it is
convenient to choose the scales for this problem as

hc = h*, xc = � , tc = � , �14�

where

� = 	 a2h*

sin �

1/3

, � =
3� �4

	h*
3 . �15�

With this choice of units, the dimensionless parameters in
Eq. �2� become

G� = 	h*

a

2/3sin1/3 �

tan �
, G� = 1. �16�

Thus, the boundary conditions are h=1, hx=hxxx=0 at x=0,
and h=b, hx=hxxx=0 at x=L, where

b =
hf

h*
. �17�

As shown in the Appendix, when the CF flow is consid-
ered in a moving reference frame with u*=1+b+b2, the
height profile is time independent. Moreover, the expression
for the velocity v can be simplified and written in terms of
h0�x� �see Eq. �A8��. In fact, that equation is a particular case
of Eq. �11� with F=0, a result that will help us below to
show the advantages of applying the proposed integral
method.

Now we proceed to compare the velocity profiles in the
vicinity of the front position, xf, obtained using both ap-
proaches; that is, Eqs. �9� and �11�. Figure 2 shows that as �x
is decreased, the difference between the solution obtained
using the integral method and the exact solution �Eq. �A8��
decreases faster than for the solution calculated using the
CFDS method. Therefore, we use the integral approach in
what follows.

B. Validation of the numerical method applied to CF flow

Here we use CF flow as a benchmark for our computa-
tions. We check the consistency of the results for both the
growth rate and shape of the perturbations in the laboratory
frame by comparing the solutions of Eqs. �4� and �6� with
those obtained in the moving reference frame. The latter ap-
proach is presented in the Appendix.

Figure 3�a� shows the evolution of a smoothed steplike
initial condition. After a transient stage, a traveling wave
profile develops. For long enough times, say t=20, Fig. 3�b�
shows that the difference between this profile and the solu-

tion given in the Appendix �see Fig. 17� is at most 1.5%.
This small difference suggests that the flow has reached a
steady state. Then, we take the profile for t� tp=20 as the
base solution on which we impose the perturbation. Here, we
consider a perturbation of the form

g�x,tp;�� = �sin�

x − xr�tp�

xf�tp� − xr�tp�
 , xr�tp� � x � xf�tp�

0, otherwise,
�

�18�

where xr�tp� and xf�tp� are the ridge �maximum thickness�
and the front positions at t= tp, respectively. The motivation
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FIG. 2. Velocity profile v�x , t=20� for the CF flow and �=90°
in the laboratory frame �u=0�. The results in the front region are
shown for three different grid sizes, �x. The open squares joined by
the dotted lines correspond to the CFDS applied to Eq. �9�, the filled
squares joined with the dashed line correspond to the integral
method, Eq. �11�, and the solid line is the analytical solution, Eq.
�A8�. Here, the precursor thickness is b=10−2.
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for concentrating the perturbation in this region is that it is
the most sensitive zone to perturbations due to the presence
of nonzero high order derivatives. Next, we calculate the
evolution of this perturbation by solving Eq. �6�, whose co-
efficients depend on the base solution h0�x , t�. Note that this
solution is time-dependent, since we work in the laboratory
reference frame.

Figure 4�a� shows the evolution of the perturbation profile
g�x , t ;�� normalized with its maximum value gm�t� for t
� tp and �=�m=12.56, which corresponds to the maximum
growth rate calculated in the Appendix. This normalized pro-
file rapidly reaches a traveling wave form, and flows together
with the base solution. Consequently, the perturbation does
not spread, but it remains contained inside the front region
�between xr�t� and xf�t��. For long times �t� tp�, one expects
that the perturbation profile approaches the eigenfunction ob-
tained by solving the eigenvalue problem �see Fig. 20 in the
Appendix�. Figure 4�b� shows that already for t=26 the dif-
ference between the two profiles is less than 7%. This result
indicates that our computations correctly simulate the evolu-
tion of both the base flow and of the perturbation.

Figure 5 shows the time evolution of gm�t ;�� for three
different wavelengths. This calculation can be carried out
simultaneously for several �’s since their evolution is inde-
pendent within the linear approximation. At early stages of
the evolution, i.e., for times close to tp, gm�t ;�� initially de-
creases. However, the magnitude of the perturbation,
g�x , t ;��, does not decrease everywhere in the domain. Fig-
ure 6 shows that even though gm�t ;�� decreases, g�x , t ;��
increases close to the contact line.

For long times, Fig. 5 shows that gm�t ;�� approaches an
exponential behavior. Here, we define the instantaneous
growth rate for every mode as

��t;�� =
1

gm

�gm

�t
. �19�

Figure 7 shows the values of � for very long times and
several �’s. The successful comparison with the eigenvalues
obtained in the Appendix supports the methodology used
here. We also note that the same results �within numerical
accuracy� are obtained in the co-moving reference frame
translating with the velocity u=u*=1+b+b2.

Another check of our method is carried out by using an
eigenfunction as the initial perturbation, instead of the one
given by Eq. �18�. In this case, we obtain exponential behav-
ior of gm�t ;�� from the very beginning, with the growth rate
as predicted by the corresponding eigenvalue.

IV. CONSTANT VOLUME FLOW

In this section we present the results for the flow of a
constant volume �CV� of fluid. With the aim of presenting
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the main features of this flow and a simultaneous comparison
with experimental data, we first consider as initial condition
a fluid configuration closely resembling one of the experi-
ments reported in Ref. �36�, with A=6.75�10−4 cm2 and
width w0=0.1286 cm. The present analysis allows one to
give a more detailed description of the problem which is not
accessible in the experiments, such as the spatial configura-
tion and time evolution of the perturbations. Then, we also
explore the influence of A and � on the wavelength of the
mode of maximum amplitude, �max. For ease of comparison,
in this section the results are presented in dimensional units.

It should be noted that any attempt to compare theoretical
results with experiments involving a moving contact line,
unavoidably requires the choice of an appropriate value of
the small scale used to overcome the stress divergence at the
contact line. In this respect, we showed in Ref. �36� that a
quantitative description of the experimental thickness profile
h0�x , t� requires one to use hf =3�10−5a for the precursor
film model, where a=0.145 cm. With this value of hf, nu-
merical convergence is achieved for �x�10−3a. However,
additional calculations show that accurate computations of
g�x , t ;�� �and consequently, of ��t ;��� require a grid step �x
of the same order as hf even when the integral method for
calculating velocities is used. This is due to the high accu-
racy needed in the evaluation of v and vx for the coefficients
ci given by Eq. �10�. Thus, comparison with experiments
requires the use of both a small hf and a typical domain of
size L�10a,which leads to a number of grid points of the
order of N=105. This large number results in long, time-
consuming calculations even when carrying them out on up-
to-date computers. As an example, evolving ten modes using
�x=hf =10−3a �the values that we use in what follows� de-
mands approximately three days of computing time on an
Opteron 250 CPU. This choice of parameters yields reason-
able computing times and accuracy. Clearly, with this value
of hf a quantitative comparison between experimental and
numerical growth rates is not possible due to their strong
dependence on hf �33,34�. Nevertheless, we show below that
the present analysis allows us to quantify other important
features of the flow, such as �max and its dependence on A
and �.

We point out that the onset time of the instability is not
known a priori. Thus, the time at which perturbations are
imposed in the simulations, tp, is chosen to be less than the
time at which undulations at the contact line are first ob-
served in the experiments, t0.

As a typical initial condition, we now take a cylindrical
cap profile, which is consistent with small A’s experiments
�36,37�. It is defined by

h�x,0� = H�1 − �x − x0�2/�w0/2�2� , �20�

where H is the maximum fluid height, x0 is the position of
the center of the cap, and w0 is its initial width. Thus, the
cross sectional area �in the x direction� is given by A
=2Hw0 /3. The problem is solved in a large enough domain,
0�x�L, so that the cap edges are far from the boundaries.
The boundary conditions are similar to those used for the CF
flow, except that here we keep the same value of h fixed at
the boundaries, i.e., h�0�=h�L�=hf.

We now compare the results of our calculations with ex-
periments �36,37�. In the experimental setup, a horizontal
filament of silicon oil �polydimethylsiloxane �PDMS� �
=� /
=20St, 
=0.96 g/cm3, 	=20 dyn/cm� is placed on a
vertical glass plate, so that the oil spreads down the plane by
gravity under complete wetting conditions. The Bond num-
ber for this flow is very small, B= �H /a�2�3�10−3.

Figure 8 shows the computational results for the evolution
of h �dashed line� for the experimentally measured param-
eters A=6.75�10−4 cm2 and w0=0.1286 cm. For early
times, this profile develops a ridge which includes a large
fraction of the total fluid volume. For later times, both the
height of the ridge and the amount of fluid in this region
decrease, while its width remains fairly constant.

The stability study is carried out by perturbing the base
state by a large set of modes �typically, 25� at tp=7 min. We
take the same initial amplitude for all modes and, since this
particular value is irrelevant, we set it to unity. In Fig. 8 we
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FIG. 7. Comparison of the asymptotic growth rates ��� ;�� de-
fined by Eq. �19� �dots� and the eigenvalue curve �solid line� ob-
tained in the Appendix.
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show the evolution of g�x , t ;�� /gm�t ;�� �solid line� for t
� tp and �max=0.49 cm, which corresponds to the mode of
maximum amplitude �see below�. Qualitatively similar pro-
files are obtained for other wavelengths. In spite of the fact
that the base flow is time dependent, after a short transient
stage, the normalized perturbation profile adopts an almost
steady shape. We note that the perturbation moves together
with the ridge, so that the peak remains contained between
xr�t� and xf�t�.

Figure 9 shows the perturbation shape for a number of
wavelengths at t=139.2 min. Note that all modes have the
same shape near the contact line, but the amplitude far away
from the front is larger for the longer wavelengths than for
the shorter ones, showing that these longer wavelengths
propagate deeper in the body of the fluid.

Figure 10 shows the amplitude spectra gm vs �. The wave-
length of the maximum amplitude decreases with time, and
finally reaches an asymptotic value �max=0.49 cm, which is

reasonably close to the experimental value �max
expt=0.55 cm of

Ref. �36�.
The inset of Figure 10 shows that there exists a narrow

band of wavelengths 0.25 cm���0.30 cm, where the
mode amplitudes remain practically constant. This band is
the counterpart of the marginal stability mode in the CF flow.

Figure 11 shows the time evolution of gm�t ;�� for a set of
�’s. We note that the amplitudes decrease within the first few
seconds. This is due to an effect similar to the one shown in
Fig. 6 for the CF flow �gm�t ;�� decreases although the per-
turbations’ magnitude close to the contact line increases�. For
later times, the amplitudes for short wavelengths ��
�0.25 cm� decrease and, therefore, these modes are stable
�see also Fig. 10�. For long wavelengths ���0.30 cm�, the
amplitudes grow by following an approximately linear de-
pendence with time, in agreement with the experimental data
presented in Fig. 12. This is in contrast to the exponential
growth in the CF flow, shown in Fig. 5. A more detailed
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comparison between Figs. 11 and 12 shows that the numeri-
cal growth is smaller than the experimental ones. This is due
to the discrepancy in the precursor film thickness, as dis-
cussed earlier. For example, Fig. 12 shows that the experi-
mental amplitude corresponding to �=0.55 cm grows 18.9
times in the interval �t0 ,207 min�, while the numerical one
increases only by a factor of 4.2. Here t0=38.2 min is the
time when we first observe undulations of the contact line in
the experiments�36�.

Figure 13 shows the instantaneous growth rate ��t ;��
�see Eq. �19��, as a function of � for different times. The
main observation is that the absolute values of all growth
rates decrease with time. For early times shown in Fig. 13�a�,
the wavelength of maximum instantaneous growth rate rap-
idly decreases with time. For example, at t=15 min, the larg-
est � corresponds to �=0.60 cm, while at t=20 min it cor-
responds to �=0.55 cm. From t=100–250 min, the
maximum of these curves corresponds to �=0.40 cm �see
Fig. 13�b��. Nevertheless, the growth rate of this mode is not
large enough to dominate the amplitude spectra, since, as
shown in Fig. 10, the mode with largest amplitude corre-
sponds to 0.49 cm. This is possible since the mode amplitude
is proportional to the integrated growth exp����t ;��dt�, and
not merely to exp��t�, as for a time-independent base solu-
tion. We also note that Fig. 13�b� suggests the existence of a
mode with ��0.29 cm whose growth rate remains constant,
in this case with ��3.1�10−3. Consequently, this mode is
the only one characterized by pure exponential growth. Ad-
ditional simulations show that this constant growth rate de-
pends on the value of hf: it decreases for larger hf and could
even become negative for a sufficiently thick precursor.

A more detailed analysis can be carried out by comparing
the numerical and experimental power spectra. The latter are
obtained by calculating the Fourier transform of the shape of
the contact line �36�. Here, we predict the evolution of an
early experimental spectrum I�t0 ;�� and compare this predic-
tion with the spectra observed in experiments at several
times t� t0. To proceed, we first define the auxiliary ampli-
tude,

g*�t;�� = gm�t;��
I�t0;��

gm�t0;��
, �21�

where gm�t ;�� is shown in Fig. 10. Thus, g*�t ;�� corre-
sponds to the initial spectrum I�t0 ;�� at t= t0. Since, as men-
tioned above, the use of a relatively large value of hf yields
lower growth rates than the experiments, the spectrum
g*�t ;�� cannot quantitatively predict the values of experi-
mental amplitudes. Nevertheless, it is possible to compare
the shapes of the spectra for different times by normalizing
g*�t ;�� with the peak value of the experimental ones at that
time, in the form

gnorm
* �t;�� = g*�t;��

I�t;�max
expt�

g*�t;�max
expt�

, �22�

where gnorm
* �t ;�� is the normalized predicted spectra. Figure

14 shows that a general good agreement between gnorm
* �t ;��

and the experimental spectra I�t ;�� is found. Since the nor-
malization is done by using the maximum amplitude of a
single wavelength �max

expt, the good agreement for all other
wavelengths implies that the only difference between the
predicted spectra and the experimental ones can be reduced
to a single scaling function. Therefore, we can assume that
I�t ;���gnorm

* �t ;��, and Eq. �22� can be rewritten as

g*�t;��
I�t;��

�
g*�t;�max

expt�
I�t;�max

expt�
, �23�

which implies that the ratio between numerical and experi-
mental amplitudes g* / I is independent of � and it is only a
function of time.

A. Dependence of �max on A and �

Here we discuss how the wavelength of maximum ampli-
tude �max varies with the cross sectional area A, and the
inclination angle �. Figure 15 shows the results for two dif-
ferent inclination angles �=90° �lower line� and 45° �upper
line�, in a range of A’s similar to that of the experiments in
Ref. �37�. The error bars are due to the fact that the ampli-
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tude spectra are calculated for a set of discrete values of �.
For �=90° we find

�max � A0.27,

in excellent agreement with the experimental results �37�.
This dependence is also very close to that proposed in Ref.
�38�, i.e., �max�A0.25. For �=45°, the simulations show that
the power law dependence has basically the same exponent,
as suggested by the upper line in Fig. 15. The fact that the
exponent does not change with � implies that the component
of gravity perpendicular to the plane does not influence �max.
However, as expected, this force does affect the growth rates
of the unstable modes.

Figure 16 shows the dependence of �max on �, for two
different A’s and 5° ���90°. We find

�max � �sin ��−0.247,

with an exponent close to that obtained by the dimensional
analysis reported in Ref. �37�.

V. CONCLUSIONS

We study the linear stability of the contact line for a con-
stant volume �CV� of fluid spreading down an incline, as an
example of a flow with no translational invariance. In con-
trast to constant flux �CF� flow, the base state is time depen-
dent, as it occurs in most of the flows found in applications.
The analysis presented here avoids the use of simplified con-
ditions, such as the imposition of a constant fluid thickness in
the bulk region, and aims to give a more accurate description
of the instability in realistic flows.

One hindrance found when solving the linear equation
that governs the evolution of the perturbations, namely, Eq.
�6�, is the accuracy needed to evaluate its coefficients. We
use here an integral method, Eq. �11�, to improve the accu-
racy of the fluid velocities’ computations. One of the merits
of the proposed method is its simplicity and ease of adapting
to other flow configurations.

For the CV flow, a normalized perturbation travels with
the same velocity as the front and, after a short transient
period, it adopts an asymptotic final shape. Regarding the
amplitude of the perturbation, we find that it grows approxi-
mately linearly with time, unlike the CF flow where the
growth is exponential.

The study of the evolution of the power spectrum gm�t ;��
and the growth rate ��t ;��, shows some interesting features
of the dynamics of the perturbation. For instance, the wave-
length corresponding to the mode of maximum amplitude is
time dependent, unlike in the CF flow, and it decreases until
an asymptotic value is reached. Moreover, for a given time,
the growth rate of this wavelength is not necessarily the larg-
est. This is possible since the instantaneous value of ��t ;��
depends on time, and then, the amplitude of each mode for
the CV flow is given by the time integral exp����t ;��dt�.
For example, Figs. 10 and 13 show that for t=200 min, the
mode with �=0.49 cm corresponds to the maximum ampli-
tude, but the maximum instantaneous growth rate corre-
sponds to �=0.40 cm.

When the same initial amplitude is assigned to all the
modes, the dominant wavelength �max is in good agreement
with the experimental one. In the typical case studied here,
we estimate �max=0.49 cm, which is reasonably close to the
experimental value �max

expt=0.55 cm. The difference between
these wavelengths is due to the fact that in experiments the
initial amplitudes of the modes are not necessarily equal to
each other, as we set in the simulations. The agreement be-
tween these wavelengths is complete when experimental am-
plitudes �at some early time� are used as input in the com-
putations, as shown in Fig. 14.

The present method gives a better estimate of �max than
those obtained by using a matching thickness to apply the CF
solution to the CV flow. For example, recalling that the
dominant wavelength of the CF flow is �m=12.56� and tak-
ing H as a characteristic thickness of CV flow, i.e., h*=H
�=7.87�10−3 cm�, the predicted wavelength is �max

=0.69 cm, further away from the experimental result �max
expt

=0.55 cm. A good agreement requires one to set h*=0.51H.
However, there is no a priori reason for this choice of h*.

In order to carry out simulations with reasonable use of
computing resources, the calculations of the perturbation
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evolution are carried out using the values of a precursor film
thickness hf larger than the real ones. Therefore, a quantita-
tive comparison between calculated and experimental growth
rates is not possible due to different viscous dissipation rates
at the contact line region. Nevertheless, we find a very good
agreement between the shape of the power spectra even for
later times of the evolution. This suggests that the only dif-
ference between experimental and numerical spectra is a
function of time, which only depends on the value of hf.

The study of the dependence of the most unstable wave-
length �max on the cross sectional area A confirms the power
law dependence found in previous works for inclination
angle �=90° �37,38�. Moreover, here we show that this de-
pendence is still valid for ��90°, with the same exponent.
We also study the effect of � on �max �5° ���90° �, and
conclude that a relationship of the type

�max � A0.27/�sin ��0.247 �24�

holds for the range of A’s explored in this work, that is, A
�1 cm2, corresponding also to Bond numbers B�1. To our
knowledge, this is the first time that this dependence has
been explicitly determined for inclination angles different
than 90°. This result confirms the predictions based on di-
mensional analysis in Ref. �37�. We point out that the depen-
dence of �max on A is significantly different from the one
reported for much larger cross section areas �and correspond-
ingly, large Bond numbers� �12�. Therefore, the study pre-
sented here constitutes an example where the knowledge of
large scale physics cannot be directly applied to micrometric
flows.

ACKNOWLEDGMENTS

J.G. acknowledges the NSF Grant No. 0122911 that sup-
ported his visit to NJIT. He also thanks the Department of
Mathematical Sciences of NJIT for hospitality. J.G., J.D.,
R.G., and A.G.G. acknowledge support from Agencia Nacio-
nal de Promoción Científica y Tecnológica �ANPCyT, Argen-
tina� and CONICET.

APPENDIX: CONSTANT FLUX FLOW

Here we give an overview of linear stability analysis in a
moving reference frame, where the base solution is station-
ary. We use the results obtained here to compare with the
computational results of the same problem obtained in the
laboratory frame.

In order to find a stationary solution in a moving reference
frame, we consider �h /�t=0 in Eq. �4� with the scaling de-
fined by Eqs. �14�–�17�. Then, the first integral of this equa-
tion is written as

h0
3h0,xxx + h0

3 − G�h0
3h0,x − u*h0 = j , �A1�

where h0�x� is the traveling wave solution, and j is an inte-
gration constant. Here, u* is the speed of the particular mov-
ing reference frame in which the shape of the thickness pro-
file is frozen, i.e., the phase velocity of the wave.

By applying the boundary conditions

h0�− � � = 1, h0��� = b , �A2�

we find

u* = 1 + b + b2, j = − b�1 + b� . �A3�

Equation �A1� is a third order ordinary differential equa-
tion that can be integrated by using a standard shooting
method in a finite domain which spans from the plateau re-
gion where h0�1, to the precursor film zone �h0�b�. For a
region far away from the contact line, the fluid thickness can
be approximated by

h0�x → − � � = 1 + ��x� , �A4�

where ��x� is a small quantity. Replacing this expression in
Eq. �A1� and keeping only the first order terms, we obtain
the following equation for �:

�xxx = G��x − b�b + 1��1 − 3�� + �1 + b + b2��1 − 2�� − 1.

The solution of this equation has the form �0e�x, where �0 is
an unknown constant and the complex exponent � satisfies

�3 = G�� − C , �A5�

with C=2−b−b2. Taking the real part of the solution and
disregarding terms with exponentials which diverge for x
→−�, we finally obtain

h0�x → − � � = 1 + �0 exp��1x�cos��2x� , �A6�

where

�1 =
6G� + 21/3�27C + �729C2 − 108G�

3 �2/3

6 � 22/3�27C + �729C2 − 108G�
3 �1/3

,

�2 = �3
6D − 21/3�27C + �729C2 − 108G�

3 �2/3

6 � 22/3�27C + �729C2 − 108G�
3 �1/3

. �A7�

Equation �A6� allows one to obtain the first and second
derivatives far away from the contact line, which are neces-
sary to apply the shooting method to solve Eq. �A1�. We
proceed by setting a seed value for the constant �0 and inte-
grating forward in the direction of increasing x. We itera-
tively modify the value of �0 until h0 approaches b �beyond
the contact line region� within a given tolerance. This proce-
dure, performed under Mathematica©, demands a computing
time of a few minutes for b=0.01.

Figure 17 shows the thickness profile as obtained with the
above procedure for two values of b on a vertical substrate
�G�=0�. The origin of the x coordinate is chosen to coincide
with the position of the minimum of h0. The inset shows a
closeup of the contact line zone, where an oscillatory struc-
ture develops. Additional calculations show that the typical
length of this structure diminishes with the thickness of the
precursor film b. Figure 18 shows that the maximum height
h0,max increases logarithmically when b decreases.

A useful property of this traveling wave solution is that
the flow velocity v can be expressed by a very simple form
which depends on the thickness profile h0�x�, but not on its
derivatives. This fact makes this variable suitable to validate
the calculation of v based on the integral method described
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in Sec. III. By replacing h0,xxx from Eq. �A1�, we obtain �see
Eq. �9��

v�x� = u* +
j

h0�x�
. �A8�

Since the flux j is negative, Eq. �A8� indicates that the maxi-
mum �minimum� of h0 occurs at the same position as the
maximum �minimum� of v. Figure 19 shows the velocity
profiles �solid lines� for two values of b, as obtained from
Eq. �A8� by using the thickness profiles h0�x� �dashed lines�.
Interestingly, due to the region of negative v’s in the contact
line zone, a given fluid element in the precursor film, which
is reached by the advancing traveling wave is first “sucked”
toward the bulk region and then accelerated forward.

1. Linear Stability Analysis

In order to perform a linear stability analysis of the trav-
eling wave solution h0�x�, with respect to perturbations in the
transverse direction y, we write

h�x,y,t� = h0�x� + �g�x�exp��t�exp�iqy� , �A9�

where � is a small number, � is the growth rate, q=2
 /� is
the wave number, and � is the wavelength of the perturba-
tion. By replacing Eq. �A9� in Eq. �1�, and considering Eq.
�16�, we obtain

Lg = − �g , �A10�

where L is a linear operator defined by

L � c4�x�
d4

dx4 + c3�x�
d3

dx3 + c2�x�
d2

dx2 + c1�x�
d

dx
+ c0�x� .

�A11�

The coefficients ci�x�, with i=0, . . . ,4, depend on h0 and its
derivatives in the form

c4�x� = h0
3,

c3�x� = 3h0
2h0,x,

c2�x� = − h0
3�2q2 + G�� ,
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line is the thickness profile. The insets shows a zoom of the contact
line zone.
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FIG. 20. Eigenfunctions for a spreading on a vertical plane
�G�=0�: �a� b=10−1, �b� b=10−2.

-12 -10 -8 -6 -4 -2 0
x

0

0.5

1

1.5
h 0

0 0.05 0.1 0.15
0.008

0.0085
0.009

0.0095
0.01

0.0105

b=10
-2

b=10
-1

FIG. 17. Thickness profiles obtained by integrating Eq. �A1� for
G�=0 with b=10−1 and b=10−2. The inset shows the oscillation of
the film thickness in the contact line zone for b=10−2.

0.001 0.01 0.1
b

1

1.2

1.4

1.6

1.8

2

h m
ax

G⊥=0

G⊥=1

G⊥=2

FIG. 18. Height of the bump h0,max as a function of b for three
values of G�.

STABILITY STUDY OF A CONSTANT-VOLUME THIN… PHYSICAL REVIEW E 76, 046308 �2007�

046308-11



c1�x� = 3j/h0 + 2u* − 3h0
2h0,x�q2 + G�� ,

c0�x� = − 3jh0,x/h0
2 + h0

3q2�q2 + G�� . �A12�

These equations are a modified version of Eq. �10� for a
reference frame moving at velocity u* as given by Eq. �A3�
�note that here h0 is time independent�.

The eigenvalue problem given by Eq. �A10� is solved
numerically by using the algorithms in the package EISPACK

within the same domain in which h0�x� is previously calcu-
lated. Figure 7 shows the result, together with the output of
the computations carried out in the laboratory frame. We find
that for the flow down a vertical plane �G�=0� and for both
considered b’s, b=10−1 and 10−2, the wavelength of maxi-
mum growth is �m=2
 /qm=12.88 and 12.56, respectively.
Figure 20 shows the eigenfunctions for �m and the same set
of b’s. For smaller b, the leading edge at x=0 is steeper and
the region of the frontal dip is more narrow.
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